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Abstract 
 
This work presents the application of a new signal processing technique, the Hilbert-Huang transform and its mar-

ginal spectrum, in analysis of vibration signals and fault diagnosis of roller bearings. The empirical mode decomposi-
tion (EMD), Hilbert-Huang transform (HHT) and marginal spectrum are introduced. First, the vibration signals are 
separated into several intrinsic mode functions (IMFs) by using EMD. Then the marginal spectrum of each IMF can be 
obtained. According to the marginal spectrum, the localized fault in a roller bearing can be detected and fault patterns 
can be identified. The experimental results show that the proposed method may provide not only an increase in the 
spectral resolution but also reliability for the fault detection and diagnosis of roller bearings. 
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1. Introduction 

Bearings are an important element in a variety of 
industrial applications such as machine tool and gear-
box. An unexpected failure of the bearing may cause 
significant economic losses. For that reason, fault de-
tection and diagnosis of bearings has been the subject 
of intensive research. Vibration signal analysis has 
been widely used in the faults detection of rotation 
machinery. Many methods based on vibration signal 
analysis have been developed. These methods include 
power spectrum estimation, fast Fourier transform 
(FFT), envelope spectrum analysis, which have 
proven to be effective in bearing fault detection. How-
ever, these methods are based on the assumption of 
stationarity and linearity of the vibration signal. There-
fore, new techniques are needed to analyze vibration 
for fault detection in roller bearings. Bearing faults by 

their nature are time localized transient events. To deal 
with non-stationary and non-linear signals, time-
frequency analysis techniques such as the short time 
Fourier transform (STFT) [1], wavelet transform (WT) 
[2-6] and Wigner-Ville distribution (WVD) [7-11] are 
widely used. The STFT [1] uses sliding windows in 
time to capture the frequency characteristics as func-
tions of time. Therefore, a spectrum is generated at 
discrete time instants. An inherent drawback with the 
STFT is the limitation between time and frequency 
resolutions. A finer frequency resolution can only be 
achieved at the expense of time resolution and vice-
versa. Furthermore, this method requires large 
amounts of computation and storage for display. The 
wavelet transform (WT), on the other hand, is similar 
to the STFT in that it also provides a time-frequency 
map of the signal being analyzed. The improvement 
that the WT makes over the STFT is that it can 
achieve high frequency resolution with sharper time 
resolutions. A very appealing feature of the wavelet 
analysis is that it provides a uniform resolution for all 
the scales. Limited by the size of the basic wavelet 
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function, the downside of the uniform resolution is 
uniformly poor resolution. Moreover, an important 
limitation of the wavelet analysis is its non-adaptive 
nature. Once the basic wavelet is selected, one has to 
use it to analyze all the data. This leads to a subjective 
assumption on the characteristic of the analyzed signal. 
As a consequence, only signal features that correlate 
well with the shape of the wavelet function have a 
chance to lead to coefficients of high value. All other 
feature will be masked or completely ignored. The 
WVD is a basic time-frequency representation, which 
is part of the Cohen class of distribution. Furthermore, 
it possesses a great number of good properties and is 
of popular interest for non-stationary signal analysis. 
Therefore, the Wigner-Ville distribution has received 
considerable attention in recent years as an analysis 
tool for non-stationary or time-varying signals. It has 
been widely used in the areas of structure-bone noise 
identification [12], optics [13], and machinery condi-
tion monitoring [14-16] and so on. The difficulty with 
this method is the severe cross terms as indicated by 
the existence of negative power for some frequency 
ranges. In addition, the WVD of discrete time signals 
suffers from the aliasing problem, which may be over-
come by employing various approaches. 

In this work, we introduce a novel approach for 
nonlinear, non-stationary data analysis. An application 
of the Hilbert-Huang transform method to fault diag-
nosis of bearings is presented. The methodology de-
veloped in this paper decomposes the original times 
series data in intrinsic oscillation modes, using the 
empirical mode decomposition. Then, the Hilbert 
transform is applied to each intrinsic mode function, 
therefore, the time-frequency distribution is obtained. 
The basic method is introduced in detail. The Hilbert-
Huang transform is applied in the research of the fault 
diagnosis of bearing faults. The experimental results 
show that this method can effectively detect and diag-
nose the roller bearing faults. 

This paper is organized as follows: Section 1 gives a 
brief introduction of the time-frequency analysis tech-
nology. Section 2 gives a brief description of the Hil-
bert-Huang transformation (HHT). Section 3 presents 
the method and procedure of the fault diagnosis based 
on HHT and marginal spectrum. Section 4 gives a 
simulation example to provide the comparisons among 
the FFT, Morlet wavelet spectrum, STFT spectrum 
and Hilbert-Huang transform spectrum in order to 
show the novelty and reliability of the proposed me-
thod. Section 5 describes the experimental set-up. 

Section 6 gives the applications of the method based 
on marginal spectrum to faults detection and diagnosis 
of roller bearing. Section 7 gives the main conclusions 
of this paper. 
 

2. An introduction to the Hilbert-Huang Tra-
nsform [17] 

Hilbert-Huang transformation is an emerging novel 
technique of signal decomposition having many in-
teresting properties. In particular, HHT has been ap-
plied to numerous scientific investigations, such as 
biomedical signals processing [18-20], geophysics 
[21-24], image processing [25], structural testing [26], 
fault diagnosis [27-29], nuclear physics [30] and so 
on. In order to facilitate the reading of this paper we 
will introduce in detail the Hilbert-Huang transforma-
tion, which is a relatively novel technique. 

 
2.1 The concept of intrinsic mode function (IMF) 

Physically, the necessary conditions for us to define 
a meaningful instantaneous frequency are that the 
functions are symmetric with respect to the local zero 
mean, and have the same numbers of zero crossings 
and extrema. Based on these observations, Huang et 
al. [17] defined IMF as a class of functions that sat-
isfy two conditions:  

1) In the whole data set, the number of extrema and 
the number of zero-crossings must be either equal or 
differ at most by one. 

2) At any point, the mean value of the envelope de-
fined by the local maxima and the envelope defined 
by the local minima is zero. 

The first condition is obvious; it is similar to the 
traditional narrow band requirements for a stationary 
Gaussian process. The second condition is a new 
idea; it modifies the classical global requirement to a 
local one; it is necessary so that the instantaneous 
frequency will not have unwanted fluctuations in-
duced by asymmetric wave forms. Ideally, the re-
quirement should be ‘the local mean of the data being 
zero’. For non-stationary data, the ‘local mean’ in-
volves a ‘local time scale’ to compute the mean, 
which is impossible to define. As a surrogate, we use 
the local mean of the envelopes defined by the local 
maxima and the local minima to force the local sym-
metry instead. This is a necessary approximation to 
avoid the definition of a local averaging time scale. 
Although it will introduce an alias in the instantane-
ous frequency for nonlinearly deformed waves, the 
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effects of non-linearity are much weaker in compari-
son with the non-stationary, as we will discuss later. 
With the physical approach and the approximation 
adopted here, the method does not always guarantee a 
perfect instantaneous frequency under all conditions. 
Nevertheless, we will show that, even under the worst 
conditions, the instantaneous frequency so defined is 
still consistent with the physics of the system studied. 

The name ‘intrinsic mode function’ is adopted be-
cause it represents the oscillation mode imbedded in 
the data. With this definition, the IMF in each cycle, 
defined by the zero crossings, involves only one 
mode of oscillation; no complex riding waves are 
allowed. With this definition, an IMF is not restricted 
to a narrow band signal, and it can be both amplitude 
and frequency modulated. In fact, it can be non-
stationary. As discussed above, purely frequency or 
amplitude modulated functions can be IMFs even 
though they have a finite bandwidth as defined tradi-
tionally. 

 
2.2 Empirical mode decomposition method: the sift-

ing process 
The empirical mode decomposition method is de-

veloped from the simple assumption that any signal 
consists of different simple intrinsic mode oscillations. 
The essence of the method is to identify the intrinsic 
oscillatory modes (IMFs) by their characteristic time 
scale in the signal and then decompose the signal 
accordingly. The characteristics time scale is defined 
by the time lapse between the successive extremes. 

To extract the IMF from a given data set, a sifting 
process is implemented as follows. First, identify all 
the local extrema, and then connect all of the local 
maxima by a cubic spline line as the upper envelope. 
Then, repeat the procedure for the local minima to 
produce the lower envelope. The upper and lower 
envelopes should cover all the data between them. 
Their mean is designated 1( )m t , and the difference 
between the data and 1( )m t  is 1( )h t , i.e.,  

 
1 1( ) ( ) ( )x t m t h t− =          (1) 

 
Ideally, 1( )h t  should be an IMF, for the construc-

tion of 1( )h t  described above should have forced the 
result to satisfy all the definitions of an IMF by con-
struction. To check if 1( )h t  is an IMF, we demand 
the following conditions: (i) 1( )h t  should be free of 
riding waves, i.e., the first component should not 
display under-shots or over-shots riding on the data 

and producing local extremes without zero crossings. 
(ii) To display symmetry of the upper and lower en-
velopes with respect to zero. (iii) Obviously the num-
ber of zero crossing and extremes should be the same 
in both functions. 

The sifting process has to be repeated as many 
times as it is required to reduce the extracted signal to 
an IMF. In the subsequent sifting process steps, 1( )h t  
is treated as the data, Then 

 
1 11 11( ) ( ) ( )h t m t h t− =         (2) 

 
where 11( )m t is the mean of the upper and lower en-
velopes 1( )h t .  

This process can be repeated up to k  times; 
1 ( )kh t is then given by 

 
1( 1) 1 1( ) ( ) ( )k k kh t m t h t− − =      (3) 

 
After each processing step, checking must be done 

on whether the number of zero crossings equals the 
number of extrema. 

The resulting time series is the first IMF, and then 
it is designated as 1 1( ) ( )kc t h t= . The first IMF com-
ponent from the data contains the highest oscillation 
frequencies found in the original data ( )x t . 

This first IMF is subtracted from the original data, 
and this difference, is called a residue 1( )r t  by: 

 
1 1( ) ( ) ( )x t c t r t− =        (4) 

 
The residue 1( )r t is taken as if it was the original 

data and we apply to it again the sifting process. The 
process of finding more intrinsic modes ( )ic t contin-
ues until the last mode is found. The final residue will 
be a constant or a monotonic function; in this last case 
it will be the general trend of the data. 

 

1

( ) ( ) ( )
n

j n
j

x t c t r t
=

= +∑        (5) 

 
Thus, one achieves a decomposition of the data into 

n-empirical IMF modes, plus a residue, ( )nr t  which 
can be either the mean trend or a constant.  

 
2.3 The Hilbert-Huang transform (HHT) and its spec-

trum 

Having obtained the IMFs by using EMD method, 
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one applies the Hilbert transform to each IMF com-
ponent. 

 
1 ( )[ ( )] di

i

cH c t
t
τ τ

π τ
+∞

−∞
=

−∫       (6) 

 
With this definition ( )ic t  and [ ( )]iH c t  form a 
complex conjugate pair, which defines an analytic 
signal ( )iz t : 

 
( ) ( ) [ ( )]i i iz t c t jH c t= +        (7) 

 
Which can be expressed as 

 
( ) ( )exp( ( ))i i iz t a t j tω=        (8) 

 
With amplitude ( )ia t  and phase ( )i tθ  defined by 
the expressions 
 

2 2( ) ( ) [ ( )]i i ia t c t H c t= +        (9) 

[ ( )]( ) arctan
( )
i

i
i

H c tt
c t

θ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

         (10) 

 
Therefore, the instantaneous frequency ( )i tω  can be 

given by  
d ( )( )

d
i

i

tt
t

θω =              (11) 
 
Thus the original data can be expressed in the fol-

lowing form 
 

1

( ) Re ( )exp( ( ) )
n

i i
i

x t a t j t dtω
=

= ∑ ∫   (12) 

 
where the residue ( )nr t  has been left out. Re {.} 
denotes the real part of a complex quantity. 

Eq. (8) enables us to represent the amplitude and 
the instantaneous frequency in a three-dimensional 
plot, in which the amplitude is the height in the time-
frequency plane. This time-frequency distribution is 
designated as the Hilbert-Huang spectrum ( , )H tω : 

 

1

( , ) Re ( )exp( ( ) )
n

i i
i

H t a t j t dtω ω
=

= ∑ ∫    (13) 
 
With the Hilbert-Huang spectrum defined, the 
marginal spectrum, ( )h ω , can be defined as 
 

0
( ) ( , )d

T
h H t tω ω= ∫          (14) 

where T  is the total data length. 
The Hilbert spectrum offers a measure of amplitude 

contribution from each frequency and time, while the 
marginal spectrum offers a measure of the total 
amplitude (or energy) contribution from each 
frequency value. The marginal spectrum represents 
the cumulated amplitude over the entire data span in a 
probabilisic sense. As pointed out by Huang et al. 
[17], the frequency in ( )h ω  has a totally different 
meaning from the Fourier spectral analysis. In the 
Fourier representation, the existence of energy at a 
frequency, ω , means a component of a sine or a 
cosine wave persisting through the time span of the 
data. Here, the existence of energy at the frequency, 
ω , means only that, in the whole time span of the 
data, there is a higher likelihood for such a wave to 
have appeared locally. In fact, the Hilbert spectrum is 
a weighted non-normalized joint amplitude-
frequency-time distribution. The weight assigned to 
each time frequency cell is the local amplitude. 
Consequently, the frequency in the marginal spectrum 
indicates only the likelihood that an oscillation with 
such a frequency exists. The exact occurrence time of 
that oscillation is given in the full Hilbert spectrum. 

Therefore, the local marginal spectrum of each 
IMF component is given as 

 

0
( ) ( , )d

T

i ih H t tω ω= ∫       (15) 

 
The local marginal ( )ih ω  spectrum offers a 

measure of the total amplitude contribution from the 
frequency ω  that we are especially interested in. 
 

3. Proposed marginal spectrum method for 
fault detection of roller bearing 

The procedure of the proposed marginal spectrum 
method is given as follows: 

(1) To calculate the envelope signal ( )y t applying 
Hilbert transform to vibration signal ( )x t ; 

2 2( ) ( ) [ ( )]y t x t H x t= +       (16) 

(2) To decompose the envelope signal ( )y t  using 
EMD and to obtain IMFs; 

(3) To select the interested IMF component ( )ic t  
according to the objective of fault diagnosis; 

(4) To calculate the marginal spectrum ( )ih ω  
according to Eq. (15); 

(5) To analyze the marginal spectrum of selected 
( )ic t  component and to draw a diagnostic conclusion. 
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4. Signal simulation of HHT spectrum 

In the following section, the results of a simple sig-
nal simulation studying the performance of the HHT 
spectrum are presented to realize a better understand-
ing of this numerical method. For example, Eq. (17) 
gives one possible mathematical description of the 
case of a sine wave signal as 

 
1

1 2

2

0 (0 )
( ) sin(2 30 ) ( )

0 ( )

t t
x t t t t t

t t T
π

≤ <⎧
⎪= ≤ ≤⎨
⎪ < ≤⎩

   (17) 

 
The time domain signal is shown in Fig.1. The 

sampling time is 0.2s. Let us compare how local the 
Hilbert-Huang transform can be with the result from 
FFT, Morlet wavelet and STFT analysis by consider-
ing an isolated sine wave given in Fig.1. With Morlet 
wavelet analysis we get the spectrum in Fig.4, in 
which the event is well defined on the time axis by 

 

 

Time (s) 
 
Fig. 1. Time domain signal of a sine wave signal. 
 

 
Frequency (Hz) 

 
Fig. 2. FFT of a sine wave signal. 

the high-frequency components, even though the 
event is a low-frequency wave. In the result, neither 
the energy density nor the frequency is well localized; 
they give a counter-intuitive interpretation of the 
Morlet wavelet spectrum: to look for definition of a 
low-frequency event in the high-frequency range. 
With FFT we get the Fourier spectrum in Fig.2. The 
Fourier spectrum should give the true frequency dis-
tribution, but it fails to give the true frequency of a 
sine signal. It is obvious that the leakage of the FFT 
renders the spectrum almost useless. With STFT 
analysis we get the STFT spectrum in Fig.5. In the 
result, neither the energy density nor the frequency is 
well localized. When the same data are treated by the 
HHT spectral analysis, we have the result in Fig.3, in 
which the energy is well localized in both frequency 
and time domains. This simple simulation example 
illustrates the unique property of the HHT spectrum 
in elimination of the spurious harmonic components 
to represent the non-stationary data. 
 

 
Time (s) 

 
Fig. 3. HHT spectrum of a sine wave signal. 
 
 

 
Time (s)  

 
Fig. 4. Morlet wavelet of a sine wave signal. 
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Time (s) 

 
Fig. 5. STFT spectrum of a sine wave signal. 
 

 
 
Fig. 6. Experimental set-up. 
 

5. Experimental set-up 

The test apparatus used in this study is shown in 
Fig. 6. The experimental set-up consists of a single-
stage gearbox, driven by a 4.5 kW AC governor mo-
tor. The driving gear has 28 teeth and the driven gear 
has 36 teeth. Therefore, the transmission ratio is 
36/28, which means that a decrease in rotation speed 
is achieved. The module of the gear is 2.5mm. The 
input speed of the spindle is 1500r/min, that is, the 
rotating frequency rf  of the input shaft is 25 Hz. 
The monitoring and diagnostic system is composed of 
three accelerometers, amplifiers, a speed and torque 
transducer, B&K 3560 spectrum analyzer and a com-
puter. The sampling frequency is 16384 Hz and the 
sampling point is 2048. After sampling, the measured 
vibration signals were loaded into MATLAB from 
data-files. 
 

6. Roller bearing fault detection and diagnosis 
based on marginal spectrum 

Roller bearings are installed in many kinds of 
machinery. Many problems of those machines may be 

caused by defects of the roller bearing. Generally, 
local defects may occur on inner race, outer race or 
rollers of bearing. A local fault may produce periodic 
impacts, the size and the repetition period which are 
determined by the shaft rotation speed, the type of 
fault and the geometry of the bearing. The successive 
impacts produce a series of impulse responses, which 
may be amplitude modulated because of the passage 
of fault through the load zone. The spectrum of such a 
signal would consist of a harmonics series of 
frequency components spaced at the component fault 
frequency with the highest amplitude around the 
resonance frequency. These frequency components 
are flanked by sidebands if there is an amplitude 
modulation due to the load zone. According to the 
period of the impulse, we can judge the location of 
the defect using characteristic frequency formulae. 
Because an inner race defect has more transfer 
segments when transmitting the impulse to the outer 
surface of the case, usually the impulse components 
are rather weak in the vibration signal.  

The tested bearing was used to study only one kind 
of surface failure: the bearing was damaged on the 
inner race or outer race. The roller bearing tested has 
a groove on the inner race or outer race. Localized 
defect was seeded on the inner race or outer race by 
an electric-discharge machine to keep their size and 
depth under control. The size of the artificial defect 
was 1mm in depth and the width of the groove was 
1.5mm. The type of the roller bearing is 208. There 
are 10 rollers in a bearing and the contact angle 

0α = ° , roller diameter d= 55/ 3 mm, bearing pitch 
diameter D=97.5mm. Then the characteristic 
frequency of the inner or outer race defect can be 
calculated by Eq. (18) or Eq. (19). 

 

1 cos
2inner r

z df f
D

α⎛ ⎞= +⎜ ⎟
⎝ ⎠

       (18) 

1 cos
2outer r

z df f
D

α⎛ ⎞= −⎜ ⎟
⎝ ⎠

       (19) 
 
Therefore, according to Eq. (18) and Eq. (19), the 

characteristic frequency of the inner race defect is 
calculated to be at 148.5Hz, and the characteristic 
frequency of the outer race defect is calculated to be 
at 101.5Hz . 

 
6.1 Application of marginal spectrum to fault detec-

tion and diagnosis of inner race  

The original vibration signal of inner race defect is  

Fr
eq

ue
nc

y 
(H

z)
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Fig. 7. Time-domain vibration signal with inner fault. 
 

 
 
Fig. 8. Envelope signal of the vibration signal with inner fault. 
 

 
 
Fig. 9. IMFs of the envelope signal shown in Fig. 8. 

 
displayed in Fig. 7. It is clear that there are periodic 
impacts in the vibration signal. There are significant 
fluctuations in the peak amplitude of the signal, and 
there are also considerable variations of frequency 
content. Fig.8 shows the envelope signal of the vibra-
tion signal, which is computed according to Eq. (16). 

To the data of Fig.8, the EMD algorithm is applied. 
Fig. 9 displays the empirical mode decomposition in 
thirteen IMFs of the envelope signal in Fig. 8. The  

 
 
Fig. 10. Marginal spectrum of IMFs. 
 

 
 
Fig. 11. IMF component 8c . 

 
decomposition identifies thirteen modes: 1c - 12c , 
which represent the different frequency components 
excited by the inner race defects, and 13c  is the 
residue, respectively. Mode 1c  contains the highest 
signal frequencies, mode 2c the next higher fre-
quency band and so on. 

From Fig. 9, it can be easily proven that the EMD 
decomposes the vibration signal very effectively on 
an adaptive method. The Hilbert-Huang transform 
can be applied to each IMF ( )ic t , resulting in a mar-
ginal spectrum ( )ih ω  according to Eq. (15). The 
marginal spectrum ( )ih ω is shown in Fig.10. From 
Fig.10, we can know that the mode 1c  with marginal 
spectrum is centered from 2000 Hz to 10000 Hz, 
mode 2c  with marginal spectrum centered from 
2000 Hz to 5000 Hz, mode 3c  with marginal spec-
trum centered from 1000 Hz to 3000 Hz and mode 

4c  with marginal spectrum centered at 1000 Hz. 
Therefore, it is can be concluded that modes 1c - 2c  
are the high frequency vibration excited by inner race 
faults of the roller bearing. The mode 8c  with mar-
ginal spectrum is centered at 148.5Hz, which can be 
obviously associated with the characteristic frequency 
of the inner race defect. Modes 9c , 10c  and 11c  are 



298  H. Li et al. / Journal of Mechanical Science and Technology 23 (2009) 291~301 
 

associated with the high harmonic of the rotational 
frequency of the input shaft. The mode 12c  is associ-
ated with the rotational frequency of the input shaft 
itself (25Hz). Moreover, the amplitude of the mar-
ginal spectrum 8h  is larger than that of the others. So 
it can be concluded that the fault occurred in the inner 
race of the roller bearing. Therefore, it seems that 
mode 8c is related to inner race defect of the roller 
bearing. The zoomed figures of 8c  and 8h  are dis-
played in Fig. 11 and Fig. 12, respectively. 
 
6.2 Application of marginal spectrum to fault detec-

tion and diagnosis of outer race 
The original vibration signal of an outer race defect 

is displayed in Fig. 13. Fig. 14 shows the envelope 
signal of the vibration signal. Fig. 15 displays the 
empirical mode decomposition in eight IMFs of the 
envelope signal in Fig. 14. The decomposition iden-
tifies eight modes: 1c - 7c  represent the frequency 
components excited by the outer race defects, 8c  is 
the residue, respectively. Mode 1c  contains the high- 

 

 
 
Fig. 12. Marginal spectrum of IMF 8c . 

 

 
 
Fig. 13. Time-domain vibration signal with outer fault. 

est signal frequencies, mode 2c the next higher fre-
quency band and so on. 

The Hilbert-Huang transform can be applied to 
each IMF ( )ic t , resulting in marginal spectrum 

( )ih ω  according to Eq. (15). This is shown in Fig.16. 
From Fig.16, we can know that the mode 1c  with 
marginal spectrum is centered from 400 Hz to 1500 
Hz, mode 2c  with marginal spectrum centered from 
200 Hz to 800 Hz and mode 3c  with marginal spec-
trum centered at 250 Hz. Therefore, it can be con-
cluded that modes 1c - 2c  are the high frequency 
vibration excited by outer faults of the bearing. The 
mode 4c  with marginal spectrum is centered at 
101.5Hz, which can be obviously associated with the 
characteristic frequency of the outer race defect. 
Modes 5c and 6c are associated with the high har-
monic of the rotational frequency of the input shaft. 
The mode 7c is associated with the rotational fre-
quency of the input shaft itself (25Hz). Moreover, the 
amplitude of the marginal spectrum 4h  is larger than 
that of the others. So it can be concluded that the fault  

 

 
 
Fig. 14. Envelope signal of the vibration signal with outer 
fault. 

 

  
Fig. 15. IMFs of the envelope signal shown in Fig. 14. 
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Fig. 16. Marginal spectrum of IMFs. 

 

 
 
Fig. 17. IMF component 4c . 

 

 
 
Fig. 18. Marginal spectrum of IMF 4c . 
 
occurred in the outer race of the roller bearing. There 
fore, it seems that mode 4c is related to the outer race 
defect of the roller bearing. The zoomed figures of 

4c  and 4h  are displayed in Fig. 17 and Fig. 18, 
respectively. 

 
7. Conclusions 

A method for fault diagnosis of roller bearings was 
presented based on a newly developed signal pro-
cessing technique named as Hilbert-Huang transform 
and its marginal spectrum. Using EMD method, the 
original vibration signals of roller bearing faults can 
be decomposed into intrinsic modes. Therefore, we 
can recognize the vibration modes that coexist in the 
system, and have a better understanding of the nature 
of the fault information contained in the vibration 
signal. According to the marginal spectrum, the 
characteristic frequency of the roller bearing faults 
can be easily recognized. Practical vibration signals 
monitored from roller bearings with inner or outer 
race fault are analyzed by the presented method. The 
experimental result has shown that marginal spectrum 
can be used as a diagnostic feature for roller bearing 
faults. 
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